Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.

Identifieur interne : 003096 ( Main/Exploration ); précédent : 003095; suivant : 003097

Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.

Auteurs : Bahtijor Rasulov [Estonie] ; Katja Hüve ; Irina Bichele ; Agu Laisk ; Ulo Niinemets

Source :

RBID : pubmed:20837700

Descripteurs français

English descriptors

Abstract

The responses of isoprene emission rate to temperature are characterized by complex time-dependent behaviors that are currently not entirely understood. To gain insight into the temperature dependencies of isoprene emission, we studied steady-state and transient responses of isoprene emission from hybrid aspen (Populus tremula × Populus tremuloides) leaves using a fast-response gas-exchange system coupled to a proton-transfer reaction mass spectrometer. A method based on postillumination isoprene release after rapid temperature transients was developed to determine the rate constant of isoprene synthase (IspS), the pool size of its substrate dimethylallyldiphosphate (DMADP), and to separate the component processes of the temperature dependence of isoprene emission. Temperature transients indicated that over the temperature range 25°C to 45°C, IspS was thermally stable and operated in the linear range of its substrate DMADP concentration. The in vivo rate constant of IspS obeyed the Arrhenius law, with an activation energy of 42.8 kJ mol(-1). In contrast, steady-state isoprene emission had a significantly lower temperature optimum than IspS and higher activation energy. The reversible temperature-dependent decrease in the rate of isoprene emission between 35°C and 44°C was caused by decreases in DMADP concentration, possibly reflecting reduced pools of energetic metabolites generated in photosynthesis, particularly of ATP. Strong control of isoprene temperature responses by the DMADP pool implies that transient temperature responses under fluctuating conditions in the field are driven by initial DMADP pool size as well as temperature-dependent modifications in DMADP pool size during temperature transients. These results have important implications for the development of process-based models of isoprene emission.

DOI: 10.1104/pp.110.162081
PubMed: 20837700
PubMed Central: PMC2971629


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20837700</idno>
<idno type="pmid">20837700</idno>
<idno type="doi">10.1104/pp.110.162081</idno>
<idno type="pmc">PMC2971629</idno>
<idno type="wicri:Area/Main/Corpus">003064</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003064</idno>
<idno type="wicri:Area/Main/Curation">003064</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003064</idno>
<idno type="wicri:Area/Main/Exploration">003064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Butadienes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Pentanes (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (metabolism)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Butadiènes (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Pentanes (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Butadienes</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Butadiènes</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Kinetics</term>
<term>Photosynthesis</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Photosynthèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The responses of isoprene emission rate to temperature are characterized by complex time-dependent behaviors that are currently not entirely understood. To gain insight into the temperature dependencies of isoprene emission, we studied steady-state and transient responses of isoprene emission from hybrid aspen (Populus tremula × Populus tremuloides) leaves using a fast-response gas-exchange system coupled to a proton-transfer reaction mass spectrometer. A method based on postillumination isoprene release after rapid temperature transients was developed to determine the rate constant of isoprene synthase (IspS), the pool size of its substrate dimethylallyldiphosphate (DMADP), and to separate the component processes of the temperature dependence of isoprene emission. Temperature transients indicated that over the temperature range 25°C to 45°C, IspS was thermally stable and operated in the linear range of its substrate DMADP concentration. The in vivo rate constant of IspS obeyed the Arrhenius law, with an activation energy of 42.8 kJ mol(-1). In contrast, steady-state isoprene emission had a significantly lower temperature optimum than IspS and higher activation energy. The reversible temperature-dependent decrease in the rate of isoprene emission between 35°C and 44°C was caused by decreases in DMADP concentration, possibly reflecting reduced pools of energetic metabolites generated in photosynthesis, particularly of ATP. Strong control of isoprene temperature responses by the DMADP pool implies that transient temperature responses under fluctuating conditions in the field are driven by initial DMADP pool size as well as temperature-dependent modifications in DMADP pool size during temperature transients. These results have important implications for the development of process-based models of isoprene emission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20837700</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>1558-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.162081</ELocationID>
<Abstract>
<AbstractText>The responses of isoprene emission rate to temperature are characterized by complex time-dependent behaviors that are currently not entirely understood. To gain insight into the temperature dependencies of isoprene emission, we studied steady-state and transient responses of isoprene emission from hybrid aspen (Populus tremula × Populus tremuloides) leaves using a fast-response gas-exchange system coupled to a proton-transfer reaction mass spectrometer. A method based on postillumination isoprene release after rapid temperature transients was developed to determine the rate constant of isoprene synthase (IspS), the pool size of its substrate dimethylallyldiphosphate (DMADP), and to separate the component processes of the temperature dependence of isoprene emission. Temperature transients indicated that over the temperature range 25°C to 45°C, IspS was thermally stable and operated in the linear range of its substrate DMADP concentration. The in vivo rate constant of IspS obeyed the Arrhenius law, with an activation energy of 42.8 kJ mol(-1). In contrast, steady-state isoprene emission had a significantly lower temperature optimum than IspS and higher activation energy. The reversible temperature-dependent decrease in the rate of isoprene emission between 35°C and 44°C was caused by decreases in DMADP concentration, possibly reflecting reduced pools of energetic metabolites generated in photosynthesis, particularly of ATP. Strong control of isoprene temperature responses by the DMADP pool implies that transient temperature responses under fluctuating conditions in the field are driven by initial DMADP pool size as well as temperature-dependent modifications in DMADP pool size during temperature transients. These results have important implications for the development of process-based models of isoprene emission.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hüve</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bichele</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laisk</LastName>
<ForeName>Agu</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C093854">isoprene synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
<ArticleId IdType="pii">pp.110.162081</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.162081</ArticleId>
<ArticleId IdType="pmc">PMC2971629</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Biochem. 2001 Jun;268(11):3190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11389720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Dec;268(23):6302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):171-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):421-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jan;101(1):89-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Feb;101(2):435-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Dec;19(14):917-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Nov;17(11):705-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jul;16(7):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jan-Feb;16(1_2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16052321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Apr;69(4):929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1588-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):666-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(5):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2009 Apr;100(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Nov;32(11):1538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Apr;158(4):1008-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Feb;103(2):79-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20039131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jan;34(1):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1985 Aug;165(3):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Oct;152(6):565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Sep;95(3):328-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28314006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 16;241(4872):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3420404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Mar;116(3):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20837700
   |texte=   Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20837700" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020